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RGlioblastoma is a malignant brain tumor of glial origin. These tumors are thought to be derived from astrocytic

cells that undergo malignant transformation. A growing body of evidence suggests that upregulation of MMP
expression plays a significant role in promoting glioma pathogenesis. Elevated expression of MMP14 not only
promotes glioma invasion and tumor cell proliferation but also plays a role in angiogenesis. Despite the fact
that levels of MMP14 correlatewith breast cancer progression, the controversial role ofMMP14 in gliomagenesis
needs to be elucidated. In the present review, we discuss the role of MMP14 in glioma progression as well as the
mechanisms of MMP14 regulation in the context of future therapeutic manipulations.

© 2014 Published by Elsevier B.V.
T

Contents
N
C
O

R
R
E
C

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
1.1. The invasive nature of glioblastoma multiforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

2. Matrix metalloproteinases and brain tumor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
3. MMP14 and glioblastoma multiforme: a party of two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

3.1. MMP-14 in glioma invasion and migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
3.2. Role of MMP-14 in glioma angiogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

4. Therapeutic targeting of MMP-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
4.1. Biological inhibitors of MMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
4.2. In vitro studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
4.3. Xenograft models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
4.4. Clinical trials with inhibitor against MMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

5. Concluding remarks/future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
52

53

54

55
U1. Introduction

Each year, approximately 35,000 people are diagnosedwith primary
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multiforme (GBM), the most aggressive of all primary brain tumors
[1]. GBM is also themost prevalent brain tumor, accounting for approx-
imately 50% of all functional brain tumors and 20% of intracranial
tumors [2]. Despite recent advances in treatment for many other can-
cers, the prognosis for GBM remains extremely poor. GBM prognosis
has not improved in decades, and patients treated through multiple
therapies including aggressive surgery, radiation, and chemotherapy,
have a median survival rate of less than 16 months [2]. The two year
survival rate for patients diagnosed with GBM nears 30%, at most, for
brain tumorigenesis and future therapeutics, Biochim. Biophys. Acta
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patients younger than 20 years, less than 10% for patients aged 20–44,
and drops to 2% for patients older than 65 years [1]. Thus, it is clear
that novel therapies for the treatment of GBM are urgently needed.
(See Table 1.)

Glioblastomamultiforme, the most common malignant brain tumor
in adults [3], falls under a larger class of tumors known as glioma, tumors
which arise from the astrocytic glial cells [4,5]. The World Health Orga-
nization has divided astrocytic tumors (astrocytoma) into four grades
based on cell's ability to infiltrate the surrounding brain. Grade I astrocy-
tomas consist of benign pilocytic tumors and other noninfiltrating
tumors, while Grades II, III, and IV consist of infiltrating astrocytomas
of various malignancy. Glioblastoma multiforme is WHO Grade IV
astrocytoma, the most malignant form of astrocytoma.
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1.1. The invasive nature of glioblastoma multiforme

The poor prognosis of GBM is largely the result of its highly invasive
nature. This diffusely infiltrative nature of glioblastoma multiforme
makes surgical intervention extremely difficult. Also surgical resection
of the tumor alone is not curative [2]. It has been observed that GBM
cells migrate in the brain in various directions such as through the nor-
mal parenchyma, the white matter tracks in the corpus callosum and
contralateral cerebral hemisphere, ventricular ependymal areas, and ce-
rebral spinal fluid (CSF) pathways. This pattern of invasion often results
in aggressive infiltration of the adjacent brain and vital areas of brain
necessary for survival [2].Therefore, the infiltrative nature of glioblasto-
ma multiforme severely impairs the efficacy of surgery and eventually
leads to tumor recurrence [6]. Almost 80% of recurrences occur within
2 to 3 cm of the original tumor location, showing that cells of the
primary tumor have already invaded the adjacent brain by the time of
surgery [7].

It is important to design treatment strategies that will minimize the
chance of relapse in these patients. In order for glioma cells to invade
the surrounding normal tissue, the tumor cells must be able to degrade
the extracellular matrix (ECM). Normally, existence of ECM does not
allow for cell movement except during processes such as tissue healing
and remodeling, inflammation, and neoplasia. It has been suggested
that tumor cells invade in three main steps: first, neoplastic cells attach
to the basementmembrane through binding of cell surface receptors to
the ECM, second, tumor cells secrete hydrolytic enzymes which locally
degrade the basement membrane; and finally, cells move into the re-
gion of the ECM degraded by proteolysis [8]. In order to invade, glioma
cellsmust secrete proteolytic enzymes, or proteases,which degrade this
extracellular matrix and mediate the invasion process. Several of prote-
ases have been implicated in this invasion process including cysteine
proteases, serine proteases, and matrix metalloproteinases.
U
N
CTable 1

MMP14 targets.

MMP14 targets

Extracellular effect

CD44 Cleaves CD44 extracellular domain
Transglutaminase Proteolytically degrades transglutaminase

into three fragments
Low-density lipoprotein receptor
related protein

Regulates the expression and uptake of LRP

Syndecan-1 Cleaves Syndecan-1

Collagens Cleaves collagen into specific collagenase fragmen
Extracellular signal regulated
kinase (ERK)

Induces ERK activation

Intracellular effect
Pericentrin Disrupts mitotic spindle formation

VEGF Complex VEGFR with Src
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Recent studies have suggested that matrix metalloproteinases in
particular are responsible for the degradation of the ECM in tumor inva-
sion. It has been shown that specificmembers of thematrixmetallopro-
teinase (MMP) not only promote glioma cell invasion but also alter
tumor cell behavior and stimulate cancer progression. As the invasive
nature of GBM largely contributes to high mortality and poor prognosis
of the disease, targeting MMPs could provide a novel therapeutic
approach for GBM treatment. This review discusses the function of a
specific matrix metalloproteinase, MMP14, in GBM and its potential as
a therapeutic target in the treatment of glioblastoma.

2. Matrix metalloproteinases and brain tumor

Matrix metalloproteinases are a family of zinc-dependent endopep-
tidases, members of the metalloproteinase class and “metzincin”
superfamily of endopeptidases [9]. The metalloproteinase class can be
distinguished from other endopeptidases, which include “serine,”
“cysteine,” and “aspartic” proteinases, by their shared catalytic domain
containing three conserved histidines in a zinc-binding HexxHxxGxxH
motif [10]. Most MMPs are secreted with the exception of the six
membrane-type MMPs (MT-MMPs) which are anchored by either a
glycosyl-phosphatidylinositol (GPI) link or a transmembrane domain.
The majority of MMPs contain four domain structures: a highly con-
served N-terminal propeptide, a catalytic linker region, and C-terminal
hemopexin-like domains. The 23 known humanMMPs are traditionally
classified into five subclasses based on substrate specificity, protein do-
main structure, and sequence homology: collagenases, gelatinases,
stromelysins, membrane-type MMPs, and other MMPs. The currently
known MMPs are numbered based on their order of discovery. The
collagenases consist of MMP1, MMP8, and MMP13; the stromelysin
subclass include MMP3, MMP10, MMP11, MMP7, and MMP26; the
gelatinases are MMP2 and MMP9; the six membrane-type MMPs com-
prise MMP14, MMP15, MMP16, MMP17, MMP24, and MMP25. The
membrane-type MMPs (MT-MMPs) are often numbered one through
six and are referred to as MT1-MMP through MT6-MMP. Though
MMPs are primarily classified based on their substrate specificity, sub-
strates forwhich they show as a function of time, there is a considerable
overlap in substrate preference between subclasses. Therefore, multiple
MMPs could fulfill the same or similar roles during pathogenic
processes.

MMPs degrade most, if not all, proteins of the extracellular matrix
and basementmembranes, including fibrillar and nonfibrillar collagens,
fibronectin, laminin, and basement membrane proteoglycans [3].
Regulation of the ECM and basement membrane (BM) is vital for
many functions and mediates interactions between individual cells
and their environment. Thus, MMPs are involved in diverse physiologi-
cal processes including tissue growth and regeneration, wound healing,
Type of study REF

Decreases cell surface adhesion Experiment research 43, 44
Promotes matrix proteolysis Experiment research 50,51

Promotes matrix proteolysis Experiment research 52, 53

Promotes cell migration by
promoting shedding

Experiment research 55-57

ts Disrupts tissue architecture Experiment research 41,42
Induction of migration Experiment research 58, 59

Causes chromosome instability
and malignant transformation

Experiment research 60

Promotes angiogenesis and
vasculogenesis inhibits apoptosis

Experiment research 61, 62
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embryonic growth and development, implantation, angiogenesis, apo-
ptosis, and nerve growth [10,11]. In recent years, it has been discovered
thatMMP substrates are not limited to extracellularmatrix proteins but
also include an ever-expanding group of proteins involved in a variety
of signaling and homeostatic systems [9]. In the brain, MMPs are
known to cleave proteins involved in synaptogenesis, synaptic plastici-
ty, and long-term potentiation [10].

Many of the knownMMPs are implicated in cancer. MMP-mediated
ECM degradation not only promotes tumor invasion, but also advances
tumor progression and has been implicated in angiogenesis andmetas-
tasis. It should be noted that other classes of endoproteases, such as the
serine, cysteine, and aspartic classes also degrade the ECM, and thus
may play roles in ECM-related tumor progression. While studies have
identified several pathways for extracellularmatrix degradation involv-
ing various proteases, one of the universal pathways require the matrix
metalloproteinases. Gliomas, for instance, express a variety of proteases,
but MMPs appear to play a particularly significant role in tumor inva-
sion and progression [12]. Studies show elevated levels of MMP-2,
MMP-9, and MT1-MMP expression in gliomas in comparison with nor-
mal brain tissue. This review will focus on the function of MT1-MMP
(MMP-14) in glioblastoma and its potential as a novel therapeutic target
in GBM.

3. MMP14 and glioblastoma multiforme: a party of two

Matrix metalloproteinase 14 (MMP-14) was the first membrane
type matrix metalloproteinase discovered, and hence is also referred
to as membrane type 1-matrix metalloproteinase (MT1-MMP). Like
other matrix metalloproteinases, MMP-14 has a pre-propeptide, a cata-
lytic domain, a hinge region, a hemopexin (Hpx) domain, a stalk (linker-
2) region, a transmembrane domain, and a cytoplasmic tail [13]. Its
carboxyl-terminal cytoplasmic domain and amino-terminal furin recog-
nition site are characteristic of membrane type MMPs [14,15]. MMP-14
is produced and secreted by cells as inactive zymogen, also known as
pro-MMP. The zinc ion of its catalytic region is essential for MMP activ-
ity, and blocks its active site. Hence an activation step is needed to
expose the catalytic site. This activation process begins with the disrup-
tion of the cysteine–zinc interaction and involvesmany proteinases and
non-proteolytic agents [16]. The activation process occurs during secre-
tion in the Golgi, and when the enzyme reaches the cell surface, it is in
its active form [13].

MMP-14 is vital in glioma cell growth, invasion,migration and angio-
genesis. Although overexpression of MMP-14 leads to excessive ECM
degradation and other problems, MMP-14 is required in the body.
MMP-14 mediates normal physiological processes like pericellular
proteolysis and extracellular matrix and hence it modulates cellular
remolding, which is essential for normal functioning of the body.
Holmbeck et al. and Zhou et al. demonstrated using MMP-14 deficient
mice that the loss of MMP14 leads to dysmorphism, arthritis, dwarfism
and other kinds of severe defects in skeletal development and soft
connective tissues and hard tissues [17,18]. It has been shown that
MMP-14 is essential for tissue remodeling, embryonic development as
well as reproduction [11,19–23].

The MMP-14 expression level is high in gliomas and particularly
high in GBM both in vivo and in vitro [12,24]. The MMP-14 level is also
elevated in the glioma-derived cells in comparison with other cancer-
derived cell types [12]. Many studies have used different methods in
demonstrating that MMP-14 expression correlates with glioma grades,
and expression level increases with histological grade of malignancy.
For e.g., Lampert et al. demonstrated using immunostaining that the
MMP-14 level increaseswith glioma grade [25]. VanMeter et al. showed
the same pattern using immunoblotting [16]. Moreover, our group
confirmed that the level of MM14 is correlated with brain tumor pro-
gression and affects patient survival [26]. Fillmore et al. again confirmed
this with Northern blot and real time PCR, demonstrating that MMP-14
expression is significantly higher in malignant glioblastoma than low
Please cite this article as: I. Ulasov, et al., The emerging role of MMP14 in
(2014), http://dx.doi.org/10.1016/j.bbcan.2014.03.002
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grade gliomas [27]. Also using real time PCR, Yamamoto et al. and
then Nakada et al. detected MMP-14 mRNA in 100% of the glioblasto-
mas, but only 22% in anaplastic astrocytomas and 0% in the low-grade
astrocytomas and normal brain [13,28].When surgical specimens of gli-
omas were analyzed, the RNA levels of MMP-14 increased with gliomas
grade [29]. All these studies suggest the possibility of using the level of
MMP-14 as a biomarker to determine the type and grade of a specific
tumor.

3.1. MMP-14 in glioma invasion and migration

Many studies have demonstrated that overexpression of MMP-14
enhances glioma cellular invasion andmigration. Sato et al. demonstrat-
ed with reconstituted basement membrane (Matrigel) that cellular in-
vasiveness increased with higher MMP-14 expression [30]. Abe et al.
demonstrated that one of the most invasive glioma cell lines in vivo,
U251, has a higher level of MMP-14 expression than the other cell
lines [31]. This confirmed that the correlation betweenMMP-14 expres-
sion level and invasiveness of the glioma cells is bidirectional. This rela-
tionship betweenMMP-14 and tumor cells invasionwas also confirmed
by Van Meter, who showed that the inhibition of MMP-14 could de-
crease in vitro invasion [16]. Interestingly, the same kind of correlation
exists betweenMMP-14 expression and tumormigration, or metastasis
[32,33].

One of themechanisms of glioma invasion is the activation of down-
stream targets. It has been noted thatMMP-14 activates proMMP-2 and
indirectly MMP-2 (also known as gelatinase A and 72 kDa type IV colla-
genase) andMMP-9 (also known as gelatinase B and 92 kDa type IV col-
lagenase) [13,32,34,35]. Deryugina et al. demonstrated that transfection
of glioma cells with MMP-14 cDNA increases proMMP-2 activity [36].
This data corroborates with results published by Hur et al. in which
the expression level of MMP-14 closely correlates with the expression
level of MMP-2 [37]. MMP-2 along with MMP-9 is widely considered
critical in the context of brain tumor invasion [13].

MMP-14 participates in mediating pericellular proteolysis of extra-
cellular matrix (ECM) macromolecules [17,38,39]. More specifically,
MMP-14 could degrade ECM macromolecules including collagens I, II,
and III, gelatin, laminins 1 and 5, fibronectin, vitronectin, aggrecan,
fibrin, tenascin, nidogen, perlecan and lumican [40,41]. Of all thesemac-
romolecules, collagen is one of the most crucial ones. Collagens are a
group of extracellular, closely related proteins that are themain compo-
nent of connective tissues including extracellularmatrix. Collagens play
a vital role in maintaining tissue architecture and in forming a stable
scaffold for cells [40]. In a tumor spheroid outgrowth assay, MMP-14
degrades collagen [36]. MMP-14 cleaves native type-I and type-III colla-
gens into the typical ¾–¼ specific collagenases fragments [41]. Due to
its role of remodeling the ECM in both normal physiology and cancer,
MMP-14 expression is considered essential in tumor invasion and
migration [40].

Besides its ability to degrade ECM macromolecules, MMP-14 pro-
motes cell invasion and migration by its interaction with several cell
surface proteins. For instance, it is shown that MMP-14-transfected
fibroblasts and glioma cells could digest the most potent CNS myelin
inhibitory proteins including BN-220 [42]. Through this we could see
the huge role MMP-14 plays in GBM cell migration.

MMP-14 is engaged in the cleavage and proteolysis of several
proteins that have adhesion functions. Some of these proteins are the
following:

CD44:
Invasive tumor cells often express CD44, which is a cell-surface gly-

coprotein. It is involved in interactions between cells, cell adhesion and
migration [43–46]. Shedding of CD44 is important in the CD44 depen-
dent migration of tumors, and the cleavage by MMP-14 is important
in this underlying mechanism [45]. Using fluorescence resonance
energy transfer (FRET) microscopy, Marerro-Diaz et al. demonstrated
that MMP-14 interacts with CD44 at the trailing edge of the invading
brain tumorigenesis and future therapeutics, Biochim. Biophys. Acta
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tumor cells and on membrane fragments released during invasion.
Also, MMP-14 cleaves CD44 extracellular domain and promotes cell
migration [47,48].

(1) Transglutaminase:

Belkin et al. demonstrated that MMP-14 could cause proteolytic
degradation of cell surface tissue transglutaminase (tTG) into three
fragments in vitro [49,50]. They also showed that Fn could protect
transglutaminase from MMP-14 proteolysis and support cell adhesion.

(2) Low-density lipoprotein receptor related protein:

Low-density lipoprotein receptor related protein (LRP) has sixmem-
bers within its family. All of them function as cell surface endocytic
receptors, which could bind and internalize extracellular ligands for
degradation in lysosomes, as well as signaling molecules [51]. Most
importantly in glioma cell invasion, LRP is involved in the regulation
of matrix proteolysis [52]. The expression and uptake of LRP by
malignant cells are regulated by MMP-14 [15,52,53].

(3) Syndecan-1

Syndecan-1 shedding has been implicated in the invasion and pro-
gression of gliomas. Using a sample size of 117 patients, Xu et al. dem-
onstrated using immunohistochemistry assay, quantitative real-time
PCR and western blot that the Syndecan-1 level is higher in invasive
glioblastoma [54]. Endo et al. and Su et al. showed that MMP-14 is
able to cleave Syndecan-1 and promote its shedding, thereby stimulat-
ing cell migration [55,56].

Cell migration is also promoted through MMP-14's interaction with
extracellular signal-regulated kinase (ERK). MMP-14 expression level
and the level of ERK are correlated with the increasing pathological
grades of glioma tissues [57]. MMP-14 induces ERK activation through
c-Src and paxillin in cancer cells, and inhibition of MMP-14 suppresses
ERK activation [58]. ERK is involved in the induction of migration, and
overexpression of MMP-14 triggers ERK activation which leads to cell
migration [33].

Normally,MMP-14 is transported to cell surface upon activation and
there processes mostly extracellular substances and functions in extra-
cellular signaling pathways. However, it should be noted that studies in
recent years have shown that MMP-14 is also trafficked along the tubu-
lin cytoskeleton and involved in the intracellular recycling pathway
[15]. A fraction of MMP-14 is accumulated in the centrosomal compart-
ment via this pathway, where it targets pericentrin, a centrosomal
protein vital for normal functioning of centrosomes during the forma-
tion of mitotic spindle [59]. MMP-14 level abnormality has been linked
to mitotic spindle aberrations, chromosome instability and malignant
transformation of cancer cells [60]. In addition, MMP-14 could regulate
VEGF-A expression intracellularly through forming a complex with
VEGFR-2 and Src [61]. SinceVEGF-A induces angiogenesis, vasculogenesis
and inhibits apoptosis,MMP-14 likely promotes tumor cellmigration and
growth via this intracellular pathway as well. In conclusion, MMP-14
appears to promote malignant glioma transformation, invasion and
metastasis through intracellular signaling pathways.

3.2. Role of MMP-14 in glioma angiogenesis

Angiogenesis is the formation of new blood vessels and it is crucial
for the progression of malignant tumor to constantly nourish growing
cancer cells with blood supply. Due to its importance in tumor progres-
sion, tumor angiogenesis is a major target for antiglioma intervention.
Since, some of these inhibitors stimulate glioma invasion [62] it is
important to find a tool that is able to reduce angiogenesis along with
decreasing cell invasion and migration at the same time.

MMP-14 has been shown to be a key factor in tumor angiogenesis
[32]. In the absence of MMP-14, Zhou et al. observed a defective
vascularizaton both in the cartilage of growth plates as well as in a cor-
neal angiogenesis assay, which reinforces MMP-14's role in initiating
Please cite this article as: I. Ulasov, et al., The emerging role of MMP14 in
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angiogenesis [18]. Whereas, it is shown that MMP-14 could promote
blood vessels sprouting in the rat aortic ring, and this angiogenic pheno-
type of MMP-14 is associated with an up-regulation of VEGF expres-
sion [14,63,64], other studies argue that MMP-14 affects angiogenesis
through influencing the bioavailability of growth factors and through
functioning as a fibrinolytic enzyme that mediates pericellular prote-
olysis [38]. Despite these controversies, it has been established that
MMP-14 promotes angiogenesis through activation of MMP-2 and
MMP-9, which play key roles in angiogenesis [65].

4. Therapeutic targeting of MMP-14

SinceMMP-14 is crucial for the progression, invasion, migration and
angiogenesis of brain tumor cells, attenuation of MMP-14 could signifi-
cantly improve patient prognosis and help to prevent recurrence
following surgery, radiation, and chemotherapy. There have been
many studies which demonstrate the therapeutic potential of inhibiting
MMP-14, or MT1-MMP in glioblastoma cell lines, mouse models, and
clinical trials.

4.1. Biological inhibitors of MMPs

The tissue inhibitors of metalloproteinases (TIMPs) are a family of
homologous inhibitors of MMPs that regulate the degradation of the
extracellular matrix by inhibiting MMPs. The TIMP family has four
members, TIMP-1, TIMP-2, TIMP-3 and TIMP-4 which play potential
therapeutic roles in glioma treatment or diagnostic marker during
cancer progression.

1) TIMP-1

There seems to be conflicting results in terms of the expression of
TIMP-1 in gliomas. According to Lampert et al. [25], overexpression of
MMP is accompanied by simultaneous increase of the TIMP-1 level.
Since the MMP-14 expression level is high in GBM, then up-regulation
of TIMP-1 should also be seen in glioblastomas. Interestingly, Groft
et al. [66] demonstrated that the expression level of TIMP-1 is barely
detectable by RT-PCR in normal brain tissue and low grade tumors,
but increases dramatically for GBM. Also, another study demonstrated
a positive correlation between gliomas grades and TIMP-1 level [29].
In contrast, Mohanam et al. showed higher expression of TIMP-1 in
normal brain tissues, meningioma and other metastatic tumors than
the highly invasive glioblastoma tumors [67].

Besides its function as a biomarker, TIMP-1, as a tissue inhibitor of
metalloproteinases, has also been indicated to have potential therapeu-
tic function by exerting effect on MMP-14. Whereas, some literature
suggests that overexpression of TIMP-1 reduces invasion, and prolongs
the survival time for glioblastoma patients via repressing MMP-14 [68,
69], other researches have reported that TIMP-1 is unable to prevent
MT1-MMP from activating MMP-2 [34,70].

2) TIMP-2

Similar to TIMP-1, contrasting data exist for the expression of TIMP-
2 in gliomas. Some studies suggest that the TIMP-2 level correlates with
MMP-14 level and glioma grade using immunohistochemistry and
other methods [25,29], while others show inverse correlation between
MMP-14 and glioma grade [67]. TIMP-2 is able to bind with the active
site MMP-14 and form a heteromolecular complex (MMP-14/TIMP-2
complex), which is essential for the subsequent formation of a complex
with proMMP-2 (progelatinase A). A model of the subsequent binding
with proMMP-2 proposes that the catalytic domain of MMP-14
binds with the N-terminal portion of TIMP-2, and the negatively
charged C-terminal of TIMP-2 could bind with the hemopexin-like
domain of proMMP-2 [32,71]. This trimeric complex is required for
the activation of proMMP-2 by MMP-14 and the accumulation of
MMP-14 on the cell surface [25,32,72,73]. Additionally, it has also
been shown byWill et al., that TIMP-2 is an excellent inhibitor, binding
brain tumorigenesis and future therapeutics, Biochim. Biophys. Acta
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to the catalytic domain of MMP-14 and preventing its overexpression
[70].

3) TIMP-3

Lampert et al. demonstrated that TIMP-3 has very low expression in
gliomas as well as normal brain, hence suggesting that TIMP-3 has a lit-
tle role in the regulation of MMP-14 [25]. However, Will et al. demon-
strated TIMP-3 to be good inhibitor of MMP-14 [70]. Consistent to
their study, Butler et al. demonstrated that TIMP-3 has a similar function
as TIMP-2, and mechanistically could interact with both the N-terminal
of MMP-2 and the C-terminal of MMP-9, both MMPs directly activated
by MMP-14 [74].

4) TIMP-4

TIMP-4 is a close homologue of TIMP-2, and like TIMP-2, could bind
to proMMP-2 and participate in the activation process. However, unlike
TIMP-2, TIMP-4, when binding to MMP-14, inhibits its autocatalytic
processing, and greatly reduces pro-MMP-2 activation by MMP-14
[64,75]. TIMP-4 is an excellent inhibitor of MMP-14 and blocks the
concavalin A-induced cellular activation of proMMP-2 [32,34,64],
hence is a great tumor progression resistance factor. The balance
between TIMP-4 and TIMP-2 is crucial in determining the potential of
cells both in normal and pathological conditions. Since it is capable of
blocking MMP-14, TIMP-4 could inhibit angiogenesis as well as prevent
reabsorption of vessels following angiogenesis [64].

5) RECK

Reversion-inducing-cysteine rich protein with Kazal motifs (RECK)
is another kind of MMP-14 inhibitor [76]. Using immunohistochemistry
and qPCR, two studies demonstrated that RECK protein expression cor-
relateswithMMP-14 negatively in glioma cells [77,78]. Also, Golan et al.
confirmed that RECK could function to hinder tumor migration and
invasion by inhibiting MMP-14 [79].

6) αvβ3 integrin inhibitor

Deryugina et al. demonstrated that the presence of αvβ3 integrin
may be required to catalyze MT1-MMP mediated activation of
progelatinaseA (MMP-2) [80]. Although this study was done in breast
carcinoma cells, it points to the potential of this integrin as an inhibitor
of MMP-14 in brain tumor as well, though further studies need to be
done.

7) DX-2400

Many broad-spectrum MMP inhibitors have limited clinical success
due to their poor selectivity and severe toxicities which causes muscu-
loskeletal pain and inflammation. Therefore, it would be useful to
find an inhibitor specific to MMP-14, and Devy et al. have identified
DX-2400, a fully human antibody, to be such an inhibitor. DX-2400
significantly decreases MMP-14 activity and thereby retards tumor
progression, metastasis, migration and invasion.

4.2. In vitro studies

Several anti-cancer approaches were proposed for targeting
MMP-14/MT1-MMP in vitro. Whereas Atobe et al. developed an
immunoliposome based therapeutic tool for targeting of MT1-MMP
positive tumor cells [81], other studies tested synthetic targets which
directly inhibit MMP-14 expression or function. For instance, Fortier et
al. have identified glycocluster constructions which could be used in
carbohydrate-based anticancer therapies to specifically target and in-
hibit MMP-14 functions [82]. Later, Zarrabi et al. designed synthetic
peptides which specifically targeted the hemopexin domain found to
be responsible for initiatingMMP-14 catalytic function in cell migration
and invasion [83]. In this study, by evaluating a series of substitution
mutations located at the conserved domains, the N terminus, a signal
peptide, a propeptide, a catalytic domain, a hinge region, and a
Please cite this article as: I. Ulasov, et al., The emerging role of MMP14 in
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hemopexin-like (PEX) domain, Zarrabi et al. found that the PEX domain
was responsible forMMP-14 associationwith CD44 that initiates the cy-
toskeleton rearrangement and the beginning of various migration and
invasion processes, including activation of proMMP-2 [83]. Although,
targeting the PEX domain of MMP-14 using specifically designed syn-
thetic peptides inhibited MMP-14-mediated cell migration, invasion,
and metastasis both in vitro and in vivo, these results warrant future
validation using other glioma models.

Another strategy to inhibit gliomamigration is to use drugs or chem-
ical inhibitors of MMP-14. Two natural isoflavonoid phytoestrogens, ge-
nistein and biochanin A, reduced in vitro invasion of U87MG cells, and
subsequently decreased MT1-MMP protein levels in a dose-dependent
manner. Moreover, attenuation ofMT1-MMP in U87MG cells correlated
with the level exhibited by MMP-2, suggesting that MT1-MMP regula-
tion of MMP-2 activity could be specifically targeted to inhibit tumor
cell invasion [84]. Distinct from the first study, Sena et al. noticed that
that MT1-MMP activation of MMP-2 could be specifically targeted by
the aminopeptidase N/CD-13 inhibitor actinonin [85]. Actinonin was
observed to directly inhibit MT1-MMP-mediated conanavalin-A-
induced pro-MMP-2 activation in U87 glioma cells. However, while
actinonin inhibited MMP-14 proteolytic processing, it was unable to
downregulate MMP-14 expression levels, suggesting that actinonin
regulates MT1-MMP function at the cell surface rather than its
gene expression [85]. Besides actinonin, the green tea polyphenol
(Q)-epigallocatechin gallate (EGCg) has also been found to inhibit
MT1-MMP mediated cell migration and disrupt proMMP-2 activation
via downregulation of MT1-MMP gene expression. EGCg was also
found to inhibit proMMP-2 protein secretion and disrupt the secretion
of other soluble proteins such as TIMP-2 [86]. These results suggest
that EGCg not only regulates MMP-14 transcription, but it also inter-
feres with MMP-14 proteolytic processing by disrupting the formation
of the pro-MMP-2/TIMP-2/MT1-MMP tri-molecular complex that
leads to MMP-2 activation [87]. Most recently, Zhang et al. demonstrat-
ed that microRNA-9 (miR-9) reduces expression of MMP-14 by
posttranscriptional targeting of the MMP-14 3′-untranslated region or
3′-UTR [88]. Overexpression of miR-9 in neuroblastoma cells notably
inhibited tumor cell adhesion, migration, invasion, and angiogenesis
in vitro [88].

4.3. Xenograft models

Various in vivo studies also support the results that are obtained
from the in vitro studies. Zhang et al. showed that overexpression of
miR-9 also impaired tumor growth, metastasis, and angiogenesis of
neuroblastoma cells in vivo, supporting the in vitro data [88]. Transfec-
tion of miR-9 into SH-SY5Y cells resulted in decreased tumor growth
and tumor weight compared to cells transfected with an empty vector,
lower vessel density within the tumors, and fewer metastatic colonies
to the lung [88]. Minocycline hydrochloride has also been identified as
a potent inhibitor of MMP-14 and was found to significantly improve
prognosis in an experimental mouse model [89]. Minocycline was ob-
served to reduce glioma invasiveness and growth by downregulating
MMP-14 expression in microglial cells [89].

In studies of other cancer cell lines, the DNA enzyme Dz13, which
targets oncogene c-Jun, was found to downregulate MMP-14 expres-
sion, inhibit primary-site tumor growth, and limit metastasis [90]. The
DNA enzymes are single-stranded DNA-based catalysts which can be
engineered to inhibit gene expression by binding to a complementary
sequence in target messenger RNA and cleaving the mRNA at specific
phosphodiester linkages [90]. In both cultured tumor cells and sections
of ectopic tumor treated with Dz13, the DNA enzyme was found to
downregulate expression of MT1-MMP [90]. In mouse models, Dz13
was found to directly inhibit both local and distal tumor metastasis
and reduce growth of ectopic osteosarcoma, prostate, and breast cancer
tumors [90]. Devy et al., meanwhile, identified DX-2400 as a highly
selective human MMP-14 inhibitory antibody using the human
brain tumorigenesis and future therapeutics, Biochim. Biophys. Acta
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Fab-phage library FAB310 and MMP-14-CD as the target [91]. In vivo
studies showed that DX-2400 prevents proMMP-2 processes on
tumor and endothelial cells, inhibits angiogenesis, and significantly de-
lays tumor progression and metastasis in MDA-MB-231 and BT-474
tumors [91]. However, treatment of MMP-14 negative tumor MCF-7
showed no difference. DX-2400 was shown to be a potent, selective
and robust in vivo inhibitor of MMP-14 in the treatment of tumors [91].

Another study designed a synthetic peptide to target and inhibit
MMP-14 phosphorylation on its unique cytoplasmic tyrosine residue
[92]. The peptide, known as antennapedia-coupled cytoplasmic MMP-
14 (ACM-14), consisted of a mutated non-phosphorylable copy of the
cytoplasmic domain of MT1-MMP coupled to the cell-penetrating
third helix of the homeodomain of the drosophila transcript factor
antennapedia [92]. While the function of MMP-14 tyrosine phosphory-
lation in tumor progression is unknown, treatingmicewith the synthet-
ic peptide significantly inhibited tumor progression and improved
survival [92]. It is hypothesized that AMC-14 inhibition of tyrosine
phosphorylation improved prognosis by inducing extensive tumor
necrosis [92]. Additional studies are needed to elucidate the role of tyro-
sine phosphorylation in tumor progression, though it appears that inhi-
bition of this process may be a novel method to improve prognosis.
However, further studies are needed in glioma models to assess their
efficacy in treating GBM.

4.4. Clinical trials with inhibitor against MMP

Two clinical trials of matrix metalloproteinase inhibitors have been
conducted with GBM patients. In a placebo-controlled trial, patients
with GBM or gliosarcoma were treated with marimastat, an orally-
active MMP-inhibitor, following surgery and irradiation [93]. In this
double-blind study, despite improvement of the median survival of
marimastat treated group vs. placebo received (42.9 vs. 37.9 weeks),
there was no statistical difference observed. These findings concluded
that marimastat alone does not improve survival, but treatment with
marimastat in conjunction with cytotoxic chemotherapy may be bene-
ficial for the patient survival.

A subsequent phase II clinical trial was performed testing
marimastat in conjunction with an additional cytotoxic agent. Patients
with recurrent and progressive GBM were treated with temolozomide
(TMZ) plus marimastat following standard radiotherapy [94]. During
that study, joint and tendon pain was detected as the most significant
therapy-related toxicity, affecting 47% of patients [94]. Overall, treat-
ment with TMZ and marimastat resulted in a 6-month progression
free survival (PFS), 29% higher than predicted by the literature [94].

5. Concluding remarks/future directions

MMP14 mediated signaling is certainly complex. It appears that
MMP function is not restricted to only migration and invasion. Emerg-
ing evidence indicates that some of the MMPs contribute to angiogene-
sis. Therefore not surprisingly, targeting of MMP14 results in multiple
therapeutic interventions. Given the fact that in normal conditions
cells require upregulation of MMP14, selective attenuation of the pro-
gression of malignant cells mediated byMMP14 represents a challenge.
In addition, a crucial role of MMP14 for the glioma progression is con-
troversial due to: 1) differential role of TIMP in regulation of MMP14
expression, with low concentration that promotes MMP14 expression
as well as tumor growth; 2) the elevated level of MMP14 expression
mediated by temozolomide and radiation; and 3) the unknown rela-
tionship between MMP14 expression and angiogenic, neural subtype
of gliomas. Although all of the above options require experimental
validation, modulation of MMP14 might serve as an anti-glioma thera-
peutic option because of its effects on cell proliferation and angiogenesis
along with prolonged survival of glioma bearing mice with the inhibi-
tion of MMP14. The emerging therapeutic evidence from the breast
cancer field also suggests that inhibition of MMP14 mediated signaling
Please cite this article as: I. Ulasov, et al., The emerging role of MMP14 in
(2014), http://dx.doi.org/10.1016/j.bbcan.2014.03.002
has potential to repress tumor growth. Since brain microenviron-
ment constantly contributes to glioma progression via secretion of
chemokines and growth factors, regulating glioma progression and in-
vasion via secreting of exosomes packed with proteins, lipids and
microRNAs [95–99] it is important to design the anti-glioma approach
with simultaneously targeting cancer cells and decreasing the effect of
brain environment to prevent glioma recovery.
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